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Abstract We study the generalization ability of multilayer neural networks with tree 
architecture for the case of random U‘aining sets. The first layer wnsists of K spherical 
perceptrons with binary output. A boolean function B wmputa the final output from the 
K values produced by the first layer. We first calculate the leaming behaviour of Gibbs leaming 
in the case of learnable rules, where teacher and student have the same architecture and the 
boolean function B is permutation symmetric with respect fo the hidden units. In the asymptotic 
case of high loading (L --f m (as usual a is the loading parameter) we find that the generalization 
error vanishes in the same way for all B; the reason being is that there are two effecrs cancelling 
each other. In the opposite limit for small a we find qualitatively different behaviour, i.e. some 
networks undergo a phase transition. We show how these differences in the behaviour depend 
on certain characteristics of the boolean hc t ion  B.  

We then study the Bays  algorithm. which generalizes according to the majority decision 
of a certain ensemble of machines, a q l  frnd that the parity function plays a special role: if the 
teacher is a parity-machine there always exim a single student parity-machine that generalizes 
as well as the B a p  algorithm. 

1. Introduction 

The learning behaviour of a single-layer perceptron has been investigated in detail using the 
method introduced by Gardner [l,  21. One can also apply this method to multilayer networks. 
Different architectures of multilayer neural networks have recently been investigated using 
different methods where the second layer was fixed to be a committee- or parity-machine 
(i.e. the final output is given by the majority vote of the hidden nodes or by the product of 
the hidden node values, respectively), while the first layer consists of binary or spherical 
perceptrons with overlapping or non-overlapping receptive fields r3-81. 

In this paper we concentrate on the case of tree architecture (i.e. non-overlapping 
receptive fields) with spherical perceptrons in the first layer and an arbitrary boolean function 
B which computes the final output from the values the first layer produced. We call the 
boolean function B the decision function. The behaviour of tree architectures is simpler 
than that of architectures with overlapping receptive fields, where additional transitions 
occur since the subperceptrons of student and teacher can be assigned to one another in 
different ways [3]. 

The storage-capacity problem for two-layer architectures with an arbitrary boolean 
function in the second layer has been investigated in [9] with a replica symmetric ansatz, 
looking in detail only on the AND-machine. In a recent paper [lo] the storage capacity of 
two-layer networks with K = 3 and K = 5 hidden nodes and arbitrary but fixed weights in 
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the second layer (which is of course different from the case of an arbitrary boolean function 
in the second layer) has been investigated by computer simulations. The difficulty is the 
necessity of replica symmetry breaking (RSB) for the storage-capacity problem [11-131. The 
validity of the replica symmetric calculation for the AND-machine as in [9] is discussed in 

For the generalization problem and learnable rules a replica symmetric ansatz was 
proven to lead to correct results concerning the thermodynamically stable phase in examples 
where the phase space was disconnected as in the cases considered here; see [I51 for the 
K = 2 parity-machine and for more detail see [16] where the reversed wedge perceptron has 
recently been investigated as a toy multilayer neural network. Replica symmetry breaking 
also occurs in other regimes of the phase space which are not thermodynamically stable 
[15,16]. In our calculations for the behaviour of Gibbs and Bayes leaming, where we are 
only interested in the thermodynamic stable phase, we use a replica symmetric ansatz. An 
investigation of RSB is in progress. 

As already known, the committee- and the parity;machines show qualitatively different 
behaviour [4,7]: the committee-machine starts at finite 01 with non-trivial generalization, 
whereas the parity-machine starts with non-trivial generalization only from a critical value 
CY, and undergoes a phase transition of first or second order, depending on the number K 
of hidden nodes. 

A general calculation for networks with tree architecture allows us to determine the 
characteristics of the boolean decision function B which are responsible for this different 
behaviour, i.e. the presence or absence of a phase transition. 

In section 2 we introduce the architectures 
considered. In section 3 we introduce the corresponding entropy for the generalization 
problem for Gibbs learning using the replica-symmetric ansatz. Our result also includes the 
case of mismatched architectures with any decision functions for the student and teacher, 
respectively. As order parameters we introduce the overlaps between the subperceptrons. In 
section 4 we calculate the generalization error as a function of the overlaps. From section 5 
onwards we restrict ourselves to learnable rules, where student and teacher have the same 
boolean function B. As already mentioned, B is assumed to be permutation symmetric and 
the behaviour can then be described by one order parameter q, fixing the overlap of two 
random representants of the phase space. For this reduced class of networks we calculate 
the learning behaviour in the limits q 4 1 and q -+ 0 in section 6 and 7, respectively. In 
section 8 we present results for K = 4 showing the variety of behaviour occurring. The 
Bayes algorithm is investigated in section 9 and in section 10 we give a conclusion. 

~141. 

This paper is organized as follows. 

2. The architecture 

We consider two-layer neural networks with non-overlapping receptive fields. The first layer 
consists of K spherical perceptrons, each with M binary input units and one binary 'hidden 
output' neuron. In the second layer the final output is computed from these K values by a 
boolean function B .  

The K subperceptrons of the first layer are 

WI, w2,. . . , WK Iwllz = M. (1) 

<=(.$11<2,-..,<K) (2) 

The input vector .$ is given by 

where every vector .$, consists of M numbers E ( i l l .  
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The binary output values of the hidden neurons are 

uf=sgn(hr) ~ ! = I ,  ..., K 
where h = (hl ,  . . . , h ~ )  is the local field with 

(3) 

The vector ( u I ) I = ~ .  .... K = (01, . . . , u ~ )  is also called the ‘internal representation’ (IR). The 
final output U is given by 

U = BGoi)) (5 ) 
where B is an arbi t rq  K-digit boolean function. 

3. The entropy for the generalization problem 

In a general ansatz the student and the teacher may have different boolean decision functions, 
B6 for the student and Bt for the teacher. The number K of hidden nodes are assumed to be 
the same. The perceptrons of the first layer are wi for the teacher and ws for the student. 
We are interested in Gibbs learning with zero temperature. The training set consists of p 
randomly chosen patterns and the corresponding answers of the teacher. The class of all 
students classifying this training set without error is called the version space V .  For Gibbs 
learning, the student is one randomly chosen member of V .  To obtain the typical behaviour 
one calculates, as usual, the averaged logarithm of the relative phase-space volume: 

s = ((lnV)[CJn)B (6) 
with V given by 

where the normalization constant L is 

So we have 0 < V < 1 which implies that S is negative or zero. The second 6 in (7) is 
a Kronecker delta. The average in (6) is taken over all possible teacher networks B (with 
fixed teacher function Bt) and all (uniformly distributed) binary training sets. As usual the 
loading parameter CY is defined as 

P 
N 

CY=- 

where p is the size of the bliining set and N = KM the size of a total input vector. In the 
following we use the abbreviations 

if B t ( { q ] )  = U  1‘ 0 otherwise 

1 if E , ( ( q } )  = U  

0 otherwise. 

A: (Iud = 

A;((Ull . , ) )  = I 
In the thermodynamic limit N -+ 03 we obtain the entropy S in the saddlepoint 
 approximation using the replica method, where replica symmetry is assumed. As order 
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parameters we introduce the overlap of corresponding subperceptrons between teacher and 
student: 

wj . w; 
lwr'llwll 

r1 = - 

and between two students of the replicated phase space, 

where f i  and y are two (different) replica indices. With the replica method, see e.g. [17], 
we obtain 

with 

and 

where 

In (15) 'Tr' means the sum over all possible iRs. The condition that the entropy is to be 
maximized, leads to an expression for the order parameters r&) and q&) as a function 
of a. 

4. The generalization ability for a given overlap 

The generalization error is the probability that a randomly chosen question is answered 
differently by the student and the teacher: 

Evaluating this expression we obtain a result which is independent of the {ql} as expected 
since the overlap of a student to the teacher, and not the overlap between two students, is 
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the relevant value determining the generalization behaviour, we obtain 

(21) 

The leaming behaviour of the architectures considered is fully determined by (14), (15) and 
(21). Nevertheless one has to take into account that for Bt # B, replica symmetry breaking 
is to be expected, so in that case the replica-symmetric ansatz is only an approximation. In 
the following, however, we consider only learnable problems. 

5. Learnable problems with permutation symmetrg 

We restrict ourselves to the case where the student and teacher networks have the same 
architecture, which means that Bt = B, =~ B. Additionally, B is assumed to be permutation 
symmetric which means that B({cq})  depends only on the number of 1's in the IR {ut], but 
not on the order. For example, the parity- and the committeemachines are permutation 
symmetric, whereas the so called ruler-machine (where one node value determines the final 
output) is not. 

For a given K the number Nps of non-equivalent permutation symmetric K-digit boolean 
functions is 

(22) 

where the trivial case (same output for all internal representations) is not counted. To 
understand (22) one has to consider that the (permutation symmetric) decision function B is 
determined by specifying the answers a, E (fl} on an IR containing n 1's (n  = 0, . . . , K). 
So the bit sequence mal . . . specifies B .  So far we have 2K+1 different decision functions, 
but some of them are isomorphic: considering the sequence mal . . ' a ~  one arrives at an 
isomorphic function by (i) changing every sign of the an's, (ii) by inverting this sequence 
to ax . . . alaO and (iii) by doing (i) and (ii) together. By avoiding these doublecounted 
functions one arrives at (22). 

Because all hidden nodes are equal in role, no distinction of the order parameter of the 
K subperceptrons is necessary. Since student and teacher have the same architecture, the 
teacher is in the same phase space as all training-error free students. Therefore r and q 
become identical so that the number of order parameters reduces to one and~(l4) becomes 

N - 2K-1 + 21(K-1)/21 - 1 
PI - 

4 
4 2 

S = max S(q) = In(1 - q )  + - - aW(q)  

with 

where 

1 - 4  
S(q) is negative for all q and a,  in agreement with definition (6). W ( q )  can be interpreted 
in a rather simple way. We consider the version space V with typical overlap q and think 
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of a single subperceptron with number 1. A random pattem has a local field at the lth 
subperceptron of each member of V with the dishibution 

(26) 
Hence, hl consists of two parts: since all members of v' have typical overlap q among each 
other, the local Eeld has the c o m n  part -tlJii where tr is a variable due to the random 
choice of the pattern. This part is the same for all members of V. The part s l m  
corresponds to the distribution of the members of V ,  so it is different for different members 
of V .  Both tl and SI are Gaussian random variables with mean zero and variance one. 

hi = $1 6- tl &. 

Now 

is the relative volume of the version space, where subperceptron 1 gives answer ut to a 
pattern with common local field -tlJii. So 

is the part of V giving final output U to a pattem which has common parts of the local 
field given by the t l ' s .  So every random pattem divides V into two parts: one part with 
relative size p1 of all networks answering this pattem with U = 1, the other part with size 
p - I  = 1 - p1 giving the answer U = -1. The entropy U) of this distribution is 

(2% 
with p,, given by (28) and where the Dtl integrations in (24) perform the average over the 
pattem dishibution. So W ( q )  is the average information gain of the system by a pattem 
answered by the teacher for a given overlap q. 

w = -PI Mpd - (1 - p l ) W  - P I )  

The expression for the generalization error simpliEes to 

In the following sections we exclude the uninteresting cases where the boolean function 
B([uI)) is constant. 

6. Behaviour for q-f 1 

This limit corresponds to a + 03. To obtain the behaviour of c (q )  one has to consider 
terms like 

[ 1 - ; arccos(q) (31) 

Taking the double trace in (30) one has to sum over these expressions, where m is defined 
as the number of hidden nodes and where U/ # uf and [U;) and [U?) are the IRs of the 
teacher and student, respectively. We are now interested in terms of lowest order in m, 
leading to 

I. 

=: CI Jiq 
(33) 

(34) 
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where n, is defined as follows. Given K hidden nodes there are ZK possible IRS each of 
which consists of K bits. Changing one bit in the IR can either lead to a different output or 
it can leave it unchanged. The number of all of those KZK possible bittlips which lead to 
a changing output is called Nc. We then define n, as 

n, = ( $ K ~ c .  (35) 
N, can be called the 'border-regime size', refemng to the border between the local field 
volumes mapped to final output 1 and -1, respectively. 

So the only architecture-dependent value determing the asymptotic ~ ( q  + 1) is n,. 
This is obvious, since in the limit of a nearly perfect student the relevant errors (concerning 
the probability of occurrence) are those where the internal representations of teacher and 
student differ in only one bit. 

We now consider the entropy S in the limit q + 1. First, we expand the function W(q)  
from (24) for this limit in lowest order of fi: 

=: c 2 f i  (37) 
where n, has the meaning introduced above. Hence the same value n, is relevant for W(q)  
in the limit q + 1 as for ~ ( q ) .  The proportionality of W ( q )  to n, can be seen as follows. 
In the limit where student and teacher are nearly the same, almost all networks in the phase 
space give the same answer U. The probability p1 for the answer -U is then proportional 
to n, with the same argument as for &): the errors caused by only one differing bit in the 
hidden nodes are the most likely ones: 

PI = n c f ( d .  (38) 

Thus, p1 factorizes into the architecture-dependent constant n, and the architecture 
independent function f ( q )  with f ( q )  -+ 0 for q --f 1. Inserting this into (29) one obtains 

w = W ( q )  = -n,f(q) Mn,f(q))  - (1 - n,f(q)) I N 1  - n, f (q) )+  - n c f ( q )  ln(f(4)) 
(39) 

in lowest order of f ( q )  + 0. Thus, not only ~ ( q ) ,  see (34), but also W ( q )  is proportional 
to n,. 

Now the entropy S(q) has the asymptotic form 

(40) 1 4 
2 2 

S(q) -+ - ~ n ( l - q )  + - - 0 1 c 2 f i .  

The condition aS/aq = 0 leads to 
1 1  

q+1---  
( 4 2  (YZ' 

Substituting this into (34) one has the result 

€(a)+ --=--[I Cl 1 1 H ( x ) l n H ( x ) d n ] - ' ~ r ; r 0 . 6 2 4 6  ... 
c 2 a  J;r 

The asymptotic behaviour of the generalization error in the l i t  (Y + 00 is, therefore, the 
same for all permutation-symmetric tree architectures. In particular, it is identical to that of 
the simple perceptron. This is because there are two effects cancelling each other, namely 
the proportionality of ~ ( q )  and W(q)  to n, for q + 1. 
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In [18] we found a similar effkt for the clock model, where the couplings are 
complex numbers and the input and output states are given by the Qth roots eki"lQ of 
1 (n = 0,. . . , Q - 1). The asymptotic behaviours of q(cl), ~ ( q )  and ((a) for q -+ 1 
(or + 00) have the same dependence on Q as in the case considered here on n,. The 
function €(a) did not, therefore, depend on Q. The reason being is that Q in [IS] plays 
the role of n,, since the number of possibilities to move in a wrong classification area by 
crossing one border is given by Q in the clock model and by n, for the case considered here. 
However, the prefactor for €(a) in the limit or --f 00 is twice as large for the clock model 
as for the present case: due to the complex couplings, there are twice as many degrees 
of freedom in [IS] which causes the factor two in the asymptotic of €(or). For the Potts 
model the degrees of freedom depend on Q and the asymptotic behaviour of €(or) is not 
&-independent [19]. 

7. Behaviour for q+ 0 

In the limit q -+ 0 we also find a number of general results. Expanding the generalization 
error from (30) for small q we obtain 

(43) 

using 

=-01 2 n  ( : ) 1 
1--arccos(x) --f -+- x + - - + . . .  . 

R 

Taking into account that (a)"' =a  for odd m, one has to consider terms l i e  

in performing the double trace from (30). Here we have used the permutation symmetry of 
B .  We now define 

where the empty product is defined as one. These a; are simply the averaged correlations 
of m node values of an IR. Specifically, a; is the mth correlation moment of the ms mapped 
to a. Nevertheless, one has to pay attention to the fact that the averaging has to be taken 
over all ms, but the correlation values are set to zero for the IR not leading to the output a: 

4 = (VI ...amS[B(lall),al)i,~. (48) 
In particular, 4 is the fraction of all IRS leading to output a. For the coefficients a; we 
have the relations 
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The lowest order of q in c(q) is determined by the first non-vanishing a;. Defining n as 
the index corresponding to 

a:#O a;=O f o r l < m < n  (51) 
one obtains for t(4) in lowest order 

=: €0 - qns1. 

(52) 

(53) 
To obtain the entropy S(q) in this limit we first consider the behaviour of W ( q )  from (24). 
Expanding the integrand we can perform the integation. Taking the trace one obtains in 
lowest order of q 

=: WO - q"w1. 

The a; are defined as above. For S we have 

(54) 

(55) 

€0 from (53) is the generalization error when the system simply guesses. WO in (55) is the 
information content which a totally untrained student (q = 0) acquires by getting a question 
answered by the teacher. 

To obtain the asymptotic behaviour of q(a) and €(a) according to (53) and (56) one 
has to distinguish between three cases dependent on n. 

7.1. The case n = I 

Looking at (56) for n = 1 and a > 0, the entropy S(q) is not maximal at 4 = 0 since 
aS/aql,,,o > 0. So the location of the maximum of S(q) is (at least for small enough q )  
given by the condition aS/aq = 0, leading to 

q = Zffw,. (57) 

€(U) + €0 - LYE1 (58) 

Inserting this into the asymptotic expansion of the generalization error (53), we have 

with 

Thus, the system has a non-trivial generalization ability for every a z 0. We will see that 
in contrast to this all networks with n > 2 have a non-t+ial generalization ability only up 
from a critical value ac of the loading parameter. The specific example of YI = 1 compared 
to n > 2 is that ay # 0. This means that in the class of all IRS leading to the final output 
U = 1 (for example) there is a preferred sign of the node values. Either 1 or -1 occurs 
more often than its opposite value! Hence, one needs a preferred sign in the IRs (for a given 
a) to obtain a non-trivial generalization for small a. 
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7.2. The case n = 2 

n > 2 means that there is no preferred sign in the IRS which leads to a specific final output 
U. We will see that these networks reach no gencralization ability up to a ceitain critical 
value of the loading parameter a. For small q the entropy S(q) behaves like 

(60) 
(61) 

S(4) + -;q2 - a(wg - qZw, )  

= -wwo + q (awl - z). 2 1 

This means that up to a critical value of a, namely 
1 

ai, = 

the entropy S(q) decreases when q increases from zero. Now two cases are possible. 
(i) The entropy S has its maximum at q = 0 for a c CS,, so q is zero up to this value of 

a. At a = EC one obtains a phase transition of second order. With W I  from (55) it follows 
that 

z2 (aAa;') 
oi, = 

4K(K - 1) (a$ 

Considering higher orders the result for the generalization error is typically 

€ ( E )  - €0 - (a - &3(a -as,). (64) 
(ii) For 01; =z tic, due to the higher-order terms in q, the entropy is for some q > 0 

higher than for q = 0. Then q is zero only up to a; undergoing a phase transition of first 
order to non-hivial generalization behaviour at this value of 01. 

So for n = 2 phase transitions of first and second order are possible, or even both 
transitions can occur together at different a in the same machine (see the section with the 
results). The Crc from (63) is at least an upper limit for the occurrence of a phase transition. 

7.3. The case n > 3 

In this case the function q(a) always has a phase transition of lirst order. This can easily 
be seen from the expansion of S(q) for q + 0 

(65) 
= q 2  (q"-201WI - $) -O1wo. (66) 

The expression (e)  is always negative if q is chosen small enough. Therefore, we always 
obtain an entropy S(q) decreasing as q increases from zero. The maximum of the entropy 
is, therefore, either at q = 0 or at q > q,,,jn > 0. This results in a phase transition of first 
order at a certain a,. 

7.4. Phase transition for n = 1 

We have seen that for n = 1 the generalization ability increases at once for a > 0. This 
increase can be very small, in fact it is very small in many cases (see examples in the next 
section). In these cases there is an area of rapidly decreasing generalization error around a 
specific 01. Sometimes there is a jump which means there can also be a phase transition of 
first order for n = 1. In contrast to the cases n > 2, the overlap 4 jumps at this point from 
a finite value larger than zero to a higher value. 

S(q) + -$q2 - a(w0 - q " q )  - 
(*) 
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n, ............... .. ........... ...... , ......I. ....... ............ 
a . ;  I i !D 

0 

K4-W 

..i ...... i. .. 

a 

W d  

......................... 

a 

. U  

li4JTmdZs 

............. ...... 

Q 

Figure 1. The generalization error e dependent on the loading parameter a for the nine network 
types with K = 4 is shown. The values in the top right-hand comer are the number n of the 
first non-vanishing correlation moment of the m, the slope 6, of e ( a ) l . ~ ,  (for n = 1). the 
phase VaDsition point rr, (if existing) and the border-regime size N,. The labelling system of 
the network types is explained in the text. For K4mcodell there are hvo ~ ‘ s ,  since there is 
first a phase transition of second order at a: = 4 from (63) and then a phase vansition of fim 
order at ai, with a: = 3.084 and U: = 3.269. 

S. Results for K= 4 

In figure 1 we present the function €(U) for all networks with K = 4. Every network 
architecture has a number called the ‘mcode’ which specifies (together with the number K 
of hidden nodes) the boolean function B in the following way. B is determined by the K+1 
output values dependent on the number of 1’s in an IR. The Ith bit (the bit corresponding 
to the number Z‘, I = 0.1, .. .) of the mcode is on (=1) if the output for 1 1’s in an R is 
one, and off (=O) otherwise. The output to the IR with K 1’s is fixed to one. This is no 
restriction since there is no prior distinction between the outputs 1 and -1. So the range 
of possible values for the mcode at given K is 0, .... Z K  - 2, where mcode = 2K - 1 is 
excluded because it is the trivial function always giving the answer one. Some of these 
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a 

Figure 1. (Continued) 

mcodes lead to equivalent machines due to the equivalence of 1 and -1 in an R, so there 
are nine different (see (22)) machines for K = 4. A machine with i nodes and mcode m 
is labelled with 'Kimcodena'. For example the AND-maChine (final output is one only if 
all hidden-node values are one, otherwise the answer is always zero) with K = 4 has the 
label 'K4mcodeO'. since 0 = 0.2" + 0.2 '  + 0.2' + 0 .  Z3; the parity-machine for K = 4 
is labelled 'K4mcode5', since 5 = 1 '2O + 0.2' + 1 . 2' + 0 .  23. 

For K = 4 there is one machine with n = 4 (the parity-machine), two machines 
with n = 2 and six machines with n = 1: K4mcode2 and K4mcode4 have n = 1 but, 
nevertheless, they undergo a phase transition of first order. This corresponds to the very 
slow decrease of <(a) at a = 0. K4mcodel has n = 2 and a phase transition of second 
order for ac = GC. K4mcodell is somehow special: it has n = 2 and a phase transition of 
second order at aS, (which is not visible in figure 1, since the decrease of E is very small). 
However, at a little higher value ac. it undergoes a phase transition of first order. The 
calculation accuracy should be good enough so that this is no artificial effect. K4mcode5 
is the parity-machine, all others have n = 1 and no phase transition, but K4mcode3 and 
K4mcode7 show an area where the decrease of the generalization error increases rapidly. 

For K > 4 networks with n = 2 often have a high &. They then have a phase transition 
at a lower a, of first order. 

Heuristically we see that the a, for the occurrence of a phase transition of first order 
is roughly determined by Nc,  see (35). For small N, no first-order transition murs (but 
eventually there is a second-order transition); the higher the value of N,, then the higher the 
value of ac. For K = 4 and K = 5 this dependence can be seen in figure 2. Nevertheless 
this is no 'hard' criterion, only a hint. For example at K = 6 there are architectures with 
lower N ,  but higher cxC than others, and there are architectures with Nc = 192 undergoing 
a phase transition of first order but others that do not. 

Up to K = 6 we found that the parity-machine (which is characterized by n = K and 
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K=5 

..... " .......................... ......... 
.... ".....I ...... ". 

. . . . .  . . .  ! 4 ....... ............................................. ........... ....... 

Figure 2. For K = 4 and K = 5 the dependence. of ciC on N .  is shown. All archi tares  with 
no phase transition of lint order have lower N,  than the beginning of the axis. Nevertheless. 
there are architectures with a phase transition of second order which have lower N,. 

has the highest N, for fixed K )  has an  CY^ which is'an upper limit of all first order at's. 
We assume that this l i t  is general for all K ,  and that for CY > all networks are 
roughly in the asymptotic region (CY -+ 00). Since N In K/ ln2  for large K [7] this 
is a general statement determing the 01 from which one good generalization is guaranteed. 

It is an interesting fact that for increasing K the case of machines with a phase bansition 
or at least an intermediate regime of rapidly increasing generalization ability becomes the 
typical case. So the 'aha effect' often seen in real life is also observed in our considerations. 

9. The Bayes algorithm 

The Bayes algorithm (see e.g. [20]) has the information-theoretic best generalization ability. 
It responds to a question with the answer which the majority of all perfect students give. 
If two perfect students, i.e. two members of the version space, have typical overlap q then 
the Bayes generalization error is given by 

with y given by (25). The "in' in (67) means that the error probability is equal to the 
minor part of the version space. 

9.1. Asymptotic behaviour 

Asymptotically for q -+ 1 the answer is determined by the signs of the tf's and the error 
probability is dominated by one-bitflip errors, so 

cBayer(q) Nc (ir-'lmDt H ( y t )  (68) 

(69) 
1 

-+ n,- G. 
R 

Comparing with the E for Gibbs learning (34), called cGibbs, we find that asymptotically for 
q - + l  

GGibbs = %ayes (70) 
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This relation is already known for the simple perceptron [21] and for the clock model [18]. 
It follows that for a + 00 

E B ~ ~ ( o ~ )  + 0.4417.. . - (3 
which is again independent of the architecture. 

In the opposite limit (for small q) there is no change in the phasetransition behaviour 
compared to Gibbs learning: ac and the order of the phase transition are unchanged. The 
reason is that both Bayes and Gibbs learning need non-vanishing q in the version space for 
non-trivial generalization, and q is the same in both cases since q is the typical overlap of 
two members of the version space. 

9.2. An approximation and the centralpint network 

To obtain an upper limit for E B ~ ~  we consider the following approximation. Instead 
of taking the minimum of the two t e m  in (67) 'we take the first term (TrA' . . .) if 
B((sgn(-q)}) = -1 and the second term (TrA-'. . .) if B((sgn(-t~))) = 1. Labelling the 
so defined approximation E ~ .  then with 

(72) 
p"yt) = -arccos 1 4 

2n 
we obtain 

(73) 

%?yes < ccpo. (74) 

ccpn(4) = cGibbs(&). (75) 

fulfilling the inequality 

Comparing with (30) we see that 

Inserting this in the asymptotic form of for q + 1 (34) we obtain 

ccpn(q) S' ne' .JZ fi 
+ n,- G. 

n 

(76) 
1 
7r 

This means that eEpn asymptotically reaches the Bayes generalization ability. 
From the definition of ccp. we can directly conshuct a network which has a generalization 

error given by cqn: considering all networks inside the version space, we take the average 
over the couplings of the subperceptrons for every hidden node: 

where j counts all members of the version space and C takes care of the normalization 
lutfPnlZ = M. The network with these central-point subperceptrons ut;'' in the first layer 
is called the central-point network. Analogous to the case of the simple perceptron, the 
overlap of this network with the teacher is .&, so the generalization error is given by cq.. 
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9.3. The Bayes generalization @the parity-machine 

We know that for the simple perceptron this central-point network has, in fact, the 
generalization ability of the Bayes algorithm for all [18,22J. We now ask whether 
there are other architectures with this characteristic. In other words, under which conditions 
does ecpn = csayes? This is simply the case when the final output B((sgn(-tl)])  of the 
central-point network equals the answer of Bayes algorithm for all patterns. We consider a 
point in the K-dimensional space of the common part -t/&, see (26), of the local fields 
corresponding to a random pattern. The central-point network gives the answer belonging 
to this point only. The Bayes algorithm gives an answer according to the majority vote of 
the members of the version space. Due to the distribution of the members in the version 
space the local fields are distributed spherically around the point given by the -tl&'s. So 
the Bayes algorithm considers a sphere around this point and considers whether the section 
of this sphere with the fl-area is larger than that with the -1-area or vice versa. (More 
accurately, it considers a lot of Gaussian-weighted spherical surfaces.) These strategies lead 
to the same result in two cases: 

(i) in the limit q 4 1 for all networks, since the spheres shrink to their central point: 
(ii) for the whole cy-space, if and only if the network is a parity-machine: 

To see the special role of the parity-machine we consider the K-dimensional space of 
the local fields of the hidden nodes. The areas leading to final output one shall be shaded 
grey, the other regimes are white (as in figure 3). We now call the point given by the 
common part -t,@ of the local fields due to a test pattern the central point (belonging to 
this pattern). The colour of this point is the colour of the regime it lies in. The majority 
(K-dimensional) volume of a sphere around this point may he grey or white. 

The point is that for the parity-machine the colour of the majority volume is always 
the colour of the central point, whereas this is not, in general, the case for all other 
decision functions. This means that the answer of the central-point network equals the 
Bayes prediction, in general, for the parity-machine hut not for all others. 

But why does the colour of the central point equal the colour of the majority volume 
just for the parity-machine? For K = 2, where only the parity- and the AND-machine exist, 
this can easily be seen from figure 3. 

ccp0(ol) =  cy) Vcy + B = parity-machine. (78) 

Figuref The plane of the cDnunon local field -I[&, see (26), for (U) the m-machine and (b) 
the parity-machine is shown. The regimes with answer one are shaded. For the Am-machine the 
major volume of the sphere is in the white area, whereas the central point is in the grey area and, 
hence, for the AND-machine the answers of Bayes algorithm and of the cenwl-point network are 
not the same in this example. For the parity-machine both the area of the central point and the 
majority area are grey, which is obviously so for al l  cases. This means that the Bayes algorithm 
and the central-point netwo& always give the same answer for the parity-machine. 

To extend the argument to higher-dimensions one uses induction from K to K + 1 to 
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show the statement for the parity-machine. One sees that this works because the space of 
the local fields is completely chequered (no neighboured areas have the same colour, see 
figure 3 for K = 2) in the case of the parity machine. For the other decision functions one 
considers that by fixing K - 2 values of the hidden nodes one has a two-dimensional AND, 
parity or constant function corresponding to the two free variables (since B is permutation 
symmetric, a ruler function can be excluded). It is easy to see that there exists at least one 
combination of the K - 2 values of the fixed parameters leading to an AND-machine due 
to the two free variables (again this holds only for permutation-symmetric E ) .  Now one 
can use the K = 2 case by choosing a pattern with high stability in the fixed hidden-node 
values. 

10. Conclusions 

We investigated the generalization ability of tree architecture neural networks with fixed 
boolean decision functions B .  Concentrating on learnable rules with a permutation 
symmetric function B we found for small 01 different behaviour concerning the occurrence 
of a phase transition. 

We found certain simple characteristic values of B determining this behaviour or at 
least giving hints, namely (i) N,, which is the border-regime size between the local-field 
volumes mapped to +1 and -1, (ii) the correlation moments a: of the class of IRs mapped 
to the final output U ,  and (i) the number n of the first non-vanishing correlation moment. 

If n > 3, a phase transition of first order always occurs. If n = 2, a phase transition 
of second order occurs at 01, = rU, given by (63). except the system already undergoes a 
phase transition of first order at lower 0 1 ~ .  For n = 1, non-trivial generalization ability is 
reached at once from 01 > 0 onwards. This means that one needs a preferred sign in the JRs 
mapped to certain U to obtain non-trivial generalization for small 01. Nevertheless, if the 
slope of the generalization error €(a) is small at 01 = 0, a phase transition of first order is 
to be expected. 

Heuristically we saw that the value of Nc is correlated to the occurrence of a first-order 
phase transition, so one can give the roughly fulfilled rule: only above a specific Nc does 
a machine have a phase transition of first order and the higher the value of N,, the higher 
the value of 0 1 ~ .  Nevertheless the 'smooth' phase transition of second order can also occur 
for low N,. 

For 01 + CO the behaviour of €(E) is independent of the architecture. The phase- 
transition point 0 1 : ~ ' ~  of the parity-machine seems to be an upper l i t  for the occurrence 
of a phase transition and the asymptotic regime star& roughly at this CY?' (for a given 
number K of hidden nodes). 

Considering the Bayes algorithm we found that the so called central-point network 
reaches Bayes generalization ability for every architecture asymptotically for ct + 00, 

whereas the parity-machine is as the only architecture type to have this characteristic over 
the whole or-space. 

Acknowledgments 

I thank U Krey, J Winkel, G Poppel and F Gerl for helpful discussions and careful reading 
of the manuscript, and the HLRZ Jiilich for computing time. 



Phase transitions in the b e h i o u r  of neural nehvorks 4531 

References 

[I] Gardner E 1987 Maximum storage capacity in neural networks Eur0ph)v. Leu. 4 481-5 
[Z] Gardner E 1988 ?he space of interactions in neural networks models 3. Phys. A: Math Gen. 21 257-70 
[31 Schwarze H 1993 Laming a rule in a multilayer neural netwolX 1. P h y .  A: Moth  Gen. 26 5781-94 
141 Schwame H and Hertz J 1992 G e n e ” i o n  in a large committee machine Emphys .  Len. 20 375-80 
1.51 Schwarze H and Hertz 1 1992 Leaming from examples in a fully WMected committee machine 3, Phyr. A: 

161 Kang K, Kwon C and Park Y 1993 Generalization in a two-layer neural network Phyr. Rev. E 48 4805-9 
[7] Opper M 1994 Leaming and generalization in a two-layer neural network the role of the Vapnik- 

[SI Malo G and Parga N 1992 Generalization propt ies  of multilayered neural netwo&s J. Phys. A: Math  Gen. 

191 Griniasty M and Grossman T 1992 Two-layer percepaon at saturation Phys. Rev. A 45 8924-37 

Math  Gen. 26 4919-36 

Chervonenkk dimension Phys. Rev. Leff. 72 2113-6 

25 5047-54 

[IO] Priel A, Blatt M, Grossman T. Domany E and Kanter I 1994 Computational capabilitie of restricted two- 

[I11 Barkai E. Hansel D and Kanw I 1990 Statistical mechanics of a multilayered neural network Phys. Rev. 

[I21 Barkai N, Hansel D and Sompolinsky H I992 Broken symmetries in multilayered percept” Phy.?. Rev. A 

[I31 Engel A, Kohler H M, Tschepke F, Vollmayr H and Zrppelius A 1992 Storage capacity and leaking algorithms 

[14] Gerl F and Krey U 1995 Replica symmetry breaking and the Kuh-Tucker cavity method in simple and 

[E] Hansel D, Mato G and Meunier C 1992 Memorization without generalization in a multilayered neural neolrork 

[ I q  EngelA and ReimersL 1994Reliabilityofreplicas~~forthegeneralizationpr~lem ofafoymultilayer 

[I71 Opper M and Kinzel W 1995 Statistical mechanics of generalidon Physic.7 ofNeurul Networkr ed J L van 

[IS] Schottky B and Gerl F and Krey U 1994 Generalization ability and information gain of clock-model 

1191 Ged F and Krev U 1995 A Kuhn-Tucker cavitv method and the ”a l iza t ion  abilitv of Potts-model 

layered percept” Phys. Rev. E 50 577-95 

L e t  65 2312 

45 4146 

for two-layer neural networks Phys. Rev. A 45 7590 

multilayer percepvons Preprim 

Europhys. Len. 20 471-6 

neural network Eur0phy.s. Lelt 28 531-6 

Hemmen, E Domany and K Schulten (Berlin: Springer) to appear 

peneptrons Z. Phy.7. B 96 2 7 9 4 0  
. .  - 

percept” Preprint 
1201 Watkin T L H. Rau A and Biehl M 1993 The statistical mechanics of leamine a rule Rev. Mod Phvs. 65 499 . .  I 

[Zl] Opper M and Haussler D 1991 Generalization perfomance of Bayes optimal classification algorithm for 

I221 Watkin T L H 1993 Optimal leaming with a neural nemo& Europhys. Left. 21 8 7 1 4  
learning a perceptron Phys. Rev. Lett. 66 267740 


